I wrote a (very long) blog post about those viral math problems and am looking for feedback, especially from people who are not convinced that the problem is ambiguous.
It’s about a 30min read so thank you in advance if you really take the time to read it, but I think it’s worth it if you joined such discussions in the past, but I’m probably biased because I wrote it :)
The ambiguous ones at least have some discussion around it. The ones I’ve seen thenxouple times I had the misfortune of seeing them on Facebook were just straight up basic order of operations questions. They weren’t ambiguous, they were about a 4th grade math level, and all thenpeople from my high-school that complain that school never taught them anything were completely failing to get it.
I’m talking like 4+1x2 and a bunch of people were saying it was 10.
Nope it’s bedmas since everything is brackets
I feel like if a blog post presents 2 options and labels one as the “scientific” one… And it is a deserved Label. Then there is probably a easy case to be made that we should teach children how to understand scientific papers and solve the equation in it themselves.
Honestly I feel like it reads better too but that is just me
I’m not sure if I’d call it the “scientific” one. I’d actually say that the weak juxtaposition is just the simple one schools use because they don’t want to confuse everyone. Scientist actually use both and make sure to prevent ambiguity. IMHO the main takeaway is that there is no consensus and one has to be careful to not write ambiguous expressions.
I mean the blog post says
“If you are a student at university, a scientist, engineer, or mathematician you should really try to ask the original author what they meant because strong juxtaposition is pretty common in academic circles, especially if variables are involved like in $a/bc$ instead of numbers.”
It doesn’t say scientific but…
I’m a scientist and I’ve only ever encountered strong juxtaposition in quick scribbles where everyone knows the equation already. Normally we’re very careful to use fraction notation (or parentheses) when there’s any possibility of ambiguity. I read the equation and was shocked that anyone would get an answer other than 9.
My comment was directed to the blog post and the claims contained in it.
The blog post claims it is popular in academy, if that is a deserved label, then I don’t understand how the author of the post lands on “there is no good or bad way, they are all valid”. I am in favor of strong juxtaposition but that is not the case that I am making here. Sorry for the confusion.
The blog post claims it is popular in academy
The blog post also completely ignores what is actually taught in high school - as found in Year 7-8 Maths textbooks - which indicates how much credibility you should attach to the blog post - none.
So I shouldn’t use text written by the author to understand the pov of the author and critic his pov because it is “only” a blog post, noted.
Not sure how you came up with that conclusion. I never said anything about it being “just a blog post”.
You said…
I don’t understand how the author of the post lands on “there is no good or bad way, they are all valid”
And I’m pointing out he arrived at that by ignoring what’s taught in high school, which is where it’s taught (not in academia). It’s like saying “It’s ambiguous if there’s such a thing as rain” if you present weather evidence which has omitted every single rainy day that has happened. i.e. cherry-picking. Every single blog which says it’s ambiguous has done the exact same thing. You can find what actually is taught in high school here
I’d actually say that the weak juxtaposition is just the simple one schools use
Schools don’t teach “weak juxtaposition” - they teach the actual rules of Maths! As per what’s in Maths textbooks. It’s adults who’ve forgotten the rules who make up the “weak juxtaposition” rule. See Lennes.
The order of operations is not part of a holy text that must be blindly followed. If these numbers had units and we knew what quantity we were trying to solve for, there would be no argument whatsoever about what to do. This is a question that never comes up in physics because you can use dimensional analysis to check to see if you did the algebra correctly. Context matters.
I would also add that you shouldn’t be using a basic calculator to solve multi part problems. Second, I haven’t seen a division sign used in a formal math class since elementary and possibly junior high. These things are almost always written as fractions which makes the logic easier to follow. The entire point of working in convention is so that results are reproducible. The real problem though is that these are not written to educate anyone. They are deliberately written to confuse so that some social media personality can make money from clicks. If someone really wants to practice math skip the click and head over to the Kahn Academy or something similar.
basic calculator to solve multi part problems
This isn’t a multi-part problem, and any basic calculator other than Texas Instruments gets it correct.
These things are almost always written as fractions
Fractions are always written as fractions - they are 1 term - 2 separate terms are always separated by an operator, such as a division sign, like in this case.
the Kahn Academy or something similar.
Good advice! In particular look up what they say about The Distributive Law.
A fair criticism. Though I think the hating on PEDMAS (or BODMAS as I was taught) is pretty harsh, as it very much does represent parts of the standard of reading mathematical notation when taught correctly. At least I personally was taught its true form was a vertical format:
B
O
DM
AS
I’d also say it’s problematic to rely on calculators to implement or demonstrate standards, they do have their own issues.
But overall, hey, it’s cool. The world needs more passionate criticisms of ambiguous communication turning into a massive interpration A vs interpretation B argument rather than admitting “maybe it’s just ambiguous”.
The problem with BODMAS is that everybody is taught to remember “BODMAS” instead of “BO-DM-AS” or “BO(DM)(AS)”. If you can’t remember the order of operations by heart you won’t remember that “DM” and “AS” are the same priority, that’s why I suggested dropping “division” and “subtraction” entirely from the mnemonic.
It’s true that calculators also don’t dictate a standard but they implement what conventions are typically used in practice. If a convention would be so dominating (let’s say 95% vs 5%) all calculator manufacturers would just follow the 95% convention, except maybe for some very special-purpose calculators.
Typo in article:
If you are however willing to except the possibility that you are wrong.
Except should be ‘accept’.
Not trying to be annoying, but I know people will often find that as a reason to disregard academic arguments.
A person not knowing the difference in usage between except and accept sounds like a perfectly reasonable reason to disregard their math skills.
Especially when said person keeps making incorrect statements about Maths and ignores completely what is taught in high school.
Thank you very much 🫶. No it’s not annoying at all. I’m very grateful not only for the fact that you read the post but also that you took the time to point out issues.
I just fixed it, should be live in a few minutes.
If you are so sure that you are right and already “know it all”, why bother and even read this? There is no comment section to argue.
I beg to differ. You utter fool! You created a comment section yourself on lemmy and you are clearly wrong about everything!
You take the mean of 1 and 9 which is 4.5!
/j
Right, because 5 rounds down to 4.5
@Prunebutt meant 4.5! and not 4.5. Because it’s not an integer we have to use the gamma function, the extension of the factorial function to get the actual mean between 1 and 9 => 4.5! = 52.3428 which looks about right 🤣
🤣 I wasn’t even sure if I should post it on lemmy. I mainly wrote it so I can post it under other peoples posts that actually are intended to artificially create drama to hopefully show enough people what the actual problems are with those puzzles.
But I probably am a fool and this is not going anywhere because most people won’t read a 30min article about those math problems :-)
Actually the correct answer is clearly 0.2609 if you follow the order of operations correctly:
6/2(1+2)
= 6/23
= 0.26🤣 I’m not sure if you read the post but I also wrote about that (the paragraph right before “What about the real world?”)
I did read the post (well done btw), but I guess I must have missed that. And here I thought I was a comedic genius
I did (skimmed it, at least) and I liked it. 🙃
It’s not ambiguos nor an communication problem, it’s basic Math
Both of those screenshots, the input is a fraction, thereby removing the ambiguity. But when you use the division symbol, an ambiguity arises. This is why you should never, for any reason, use a division symbol.
…he literally used the
÷
operator in the top screenshot. WolframAlpha interprets it as synonymous with/
.When putting in ambiguous inputs to WolframAlpha, it does its best to interpret it so that it’s can give an answer, and it shows you underneath how it interpreted it. That doesn’t mean there wasn’t any ambiguity to begin with.
Right. I’m saying both / and ÷ are ambiguous in that context. WA interprets both symbols as having equivalent meaning.
You should read the part about WolframAlpha in the blog.
https://www.wolframalpha.com/input?i=6%2Fxy+where+x%3D2%2C+y%3D3
And WolframAlpha did division before brackets (turned 6/2 into a fraction, thus making it a single term instead of separate terms, all before doing brackets), thus violating the order of operations rules.
I would do the mighty parentheses first, and then the 2 that dares to touch the mighty parentheses, finally getting to the run-of-the-mill division. Hence the answer is One.
The real lesson here is that clear, unambiguous communication is key.
Great write up! The answer is use parentheses or fractions and stop wasting everyone’s time 😅
No it isn’t dotnet.social/@SmartmanApps/110819283738912144
I always hate any viral math post for the simple reason that it gives me PTSD flashbacks to my Real Analysis classes.
The blog post is fine, but could definitely be condensed quite a bit across the board and still effectively make the same points would be my only critique.
At it core Mathematics is the language and practices used in order to communicate numbers to one another and it’s always nice to have someone reasonably argue that any ambiguity of communication means that you’re not communicating effectively.
The blog post is fine
Except that it’s wrong. Read this instead.
I disagree. Without explicit direction on OOO we have to follow the operators in order.
The parentheses go first. 1+2=3
Then we have 6 ÷2 ×3
Without parentheses around (2×3) we can’t do that first. So OOO would be left to right. 9.
In other words, as an engineer with half a PhD, I don’t buy strong juxtaposition. That sounds more like laziness than math.
as a half PhD
Go read the article, it’s about you
Go read the article, it’s about you
The article is wrong dotnet.social/@SmartmanApps/110897908266416158
Without parentheses around (2×3)
But there is parentheses around (2x3). a(b+c)=(ab+ac) - The Distributive Law. You can’t remove them unless there is only 1 term left inside. You removed them when you still had 2 terms inside, 2x3.
6/2(1+2)=6/2(3)=6/(2*3)=6/6=1
OR
6/2(1+2)=6/(2+4)=6/6=1
How are people upvoting you for refusing to read the article?
Because those people also didn’t read the article and are reacting from their gut.
are reacting from their gut
As was the person who wrote the article. Did you not notice the complete lack of Maths textbooks in it?
I did read the article. I am commenting that I have never encountered strong juxtaposition and sharing why I think it is a poor choice.
You probably missed the part where the article talks about university level math, and that strong juxtaposition is common there.
I also think that many conventions are bad, but once they exist, their badness doesn’t make them stop being used and relied on by a lot of people.
I don’t have any skin in the game as I never ran into ambiguity. My university professors simply always used fractions, therefore completely getting rid of any possible ambiguity.
You probably missed the part where the article talks about university level math,
This is high school level Maths. It’s not taught at university.
I have never encountered strong juxtaposition
There’s “strong juxtaposition” in both Terms and The Distributive Law - you’ve never encountered either of those?
Because as a high school Maths teacher as soon as I saw the assertion that it was ambiguous I knew the article was wrong. From there I scanned to see if there were any Maths textbooks at any point, and there wasn’t. Just another wrong article.
Lol. Read it.
Why would I read something that I know is wrong? #MathsIsNeverAmbiguous
Mathematical notation however can be. Because it’s conventions as long as it’s not defined on the same page.
Mathematical notation however can be.
Nope. Different regions use different symbols, but within those regions everyone knows what each symbol is, and none of those symbols are in this question anyway.
Because it’s conventions as long as it’s not defined on the same page
The rules can be found in any high school Maths textbook.
Let’s do a little plausibility analysis, shall we? First, we have humans, you know, famously unable to agree on an universal standard for anything. Then we have me, who has written a PhD thesis for which he has read quite some papers about math and computational biology. Then we have an article that talks about the topic at hand, but that you for some unscientific and completely ridiculous reason refuse to read.
Let me just tell you one last time: you’re wrong, you should know that it’s possible that you’re wrong, and not reading a thing because it could convince you is peak ignorance.
I’m done here, have a good one, and try not to ruin your students too hard.
as an engineer with half a PhD
As an engineer with a full PhD. I’d say we engineers aren’t that great with math problems like this. Thus any responsible engineer would write it in a way that cannot be misinterpreted. Because misinterpreted mathematics can kill people…
As an engineer with a full PhD. I’d say we engineers aren’t that great with math problems like this
Yay for a voice of reason! I’ve yet to see anyone who says they have a Ph.D. get this correct (I’m a high school Maths teacher/tutor - I actually teach this topic).
Yeah, but implicit multiplication without a sign is often treated with higher priority.
Sure. That doesn’t mean it’s right to do.
Please read the article, that’s exactly what it’s about. There is no right answer.
I read the article, and it explained the situation and the resultant confusion very well. That said, could we not have some international body just make a decision one way or the other, instead of perpetuating this uncertainty?
could we not have some international body just make a decision one way or the other
There’s no decision to be made. The correct rules are already taught in literally every Year 7-8 Maths textbook.
There is a right answer. Read this instead dotnet.social/@SmartmanApps/110897908266416158
Is it though? I’ve only ever seen it treated as standard multiplication.
Read TFA
The answer realistically is determined by where you place implicit multiplication (or “multiplication by juxtaposition”) in the order of operations.
Some place it above explicit multiplication and division, meaning it gets done before the division giving you an answer of 1
But if you place it as equal to it’s explicit counterparts, then you’d sweep left to right giving you an answer of 9
Since those are both valid interpretations of the order of operations dependent on what field you’re in, you’re always going to end up with disagreements on questions like these…
But in reality nobody would write an equation like this, and even if they did, there would usually be some kind of context (I.e. units) to guide you as to what the answer should be.
Edit: Just skimmed that article, and it looks like I did remember the last explanation I heard about these correctly. Yay me!
yeah, our math profs taught if the 2( is to be separated from that bracket for the implied multiplication then you do that math first, because the 2(1+2) is the same as (1+2)+(1+2) and not related to the first 6.
2(1+2) is the same as (1+2)+(1+2)
You nearly had it. 2(1+2) is the same as (2x1+2x2). The Distributive Law - it’s the reverse process to factorising.
So you were taught strong juxtaposition then, where the implicit multiplication takes priority?
if it was 6÷2x(2+1) they suggested do division and mult from left to right, but 6÷2(2+1) implied a relationship between the number outside the parenthesis and inside them, and as soon as you broke those () you had to do the multiplication immediately that is connected to them. Like some models of calculatora do. wasn’t till a few yeara ago that I heard people were doing it differently.
if it was 6÷2x(2+1) they suggested do division and mult from left to right, but 6÷2(2+1)
Correct! Terms are separated by operators and joined by grouping symbols, so 6÷2x(2+1) is 3 terms - 6, 2, and (2+1) - whereas 6÷2(2+1) is 2 terms - 6 and 2(2+1), and the latter term has a precedence of “brackets”, NOT “multiplication”. Multiplication refers literally to multiplication signs, which are only present in your first example (hence evaluated with a different order than your second example).
Also noted that the OP has ignored your comment, seeing as how you pointed out the unambiguous way to do it.
Yeah, that’s why fractions are good thing.
Exactly. With the blog post I try to reach people who already heared that some people say it’s ambiguous but either down understand how, or don’t believe it. I’m not sure if that will work out because people who “already know the only correct answer” probably won’t read a 30min blog post.